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Impedance Matching 
 
A number of techniques can be used to eliminate reflections when 
the characteristic impedance of the line and the load impedance are 
mismatched.  
 
Impedance matching techniques can be designed to be effective for 
a specific frequency of operation (narrow band techniques) or for a 
given frequency spectrum (broadband techniques).   
 
A common method of impedance matching involves the insertion of 
an impedance transformer between line and load 

 
 
 
 
 
 
 
 

 
 

Impedance 
TransformerZ0 

 
ZR



Transmission Lines 

© Amanogawa, 2006 – Digital Maestro Series 142

An impedance transformer may be realized by inserting a section of 
a different transmission line with appropriate characteristic 
impedance.  A widely used approach realizes the transformer with a 
line of length 4λ .   
 
The quarter-wavelength transformer provides narrow-band 
impedance matching.  The design goal is to obtain zero reflection 
coefficient exactly at the frequency of operation. 
 
 
 
 
 
 
 
 

The length of the transformer is fixed at 4λ  for design 
convenience, but is also possible to realize generalized transformer 
lines for which the length of the transformer is a design outcome. 

ZR 

λ/4 

Zλ/4 Z0 Z0 

f0

|Γ| 



Transmission Lines 

© Amanogawa, 2006 – Digital Maestro Series 143

A broadband design may be obtained by a cascade of 4λ  line 
sections of gradually varying characteristic impedance.   
 
 
 
                 
 
 
 
 
 
 
 
 
It is not possible to obtain exactly zero reflection coefficient for all 
frequencies in the desired band.   
 
Therefore, available design approaches specify a maximum 
reflection coefficient (or maximum VSWR) which can be tolerated in 
the frequency band of operation.  
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Another broadband matching approach may use a tapered line 
transformer with continously varying characteristic impedance 
along its length.  In this case, the design obtains reflection 
coefficients lower than a specified tolerance at frequencies 
exceeding a minimum value.   
 
 
  
 
 
 
 
 
 
 
 
Various taper designs are available, including linear, exponential, 
and raised-cosine impedance profiles.  An optimal design (due to 
Klopfenstein) involves discontinuity of the impedance at the 
transformer ends. 
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Another narrow-band approach involves the insertion of a shunt 
imaginary admittance on the line.  Often, the admittance is realized 
with a section (or stub) of transmission line and the technique is 
commonly known as stub matching.   The end of the stub line is 
short-circuited or open-circuited, in order to realize an imaginary 
admittance.  Designs are also available for two or three shunt 
admittances placed at specified locations on the line.   

Other narrow-band examples involve the insertion of a series 
impedance (stub) along the line, and the insertion of a series and a 
shunt element in L-configuration. 
 
 
 
 
 
 

The theory for several basic narrow-band matching techniques is 
detailed in the following.  Note that the effect of loss in the 
transmission lines is always neglected. 
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Matching I: Impedance Transformers 
• Quarter Wavelength Transformer – A simple narrow band 

impedance transformer consists of a transmission line section 
of length 4λ  

 
 
 
 
 
 
 
 
 
 
 
The impedance transformer is positioned so that it is connected to 
a real impedance ZA.  This is always possible if a location of 
maximum or minimum voltage standing wave pattern is selected. 
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Consider a general load impedance with its corresponding load 
reflection coefficient 
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If the transformer is inserted at a location of voltage maximum dmax 
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 Consider now the input impedance of a line of length 4λ  
  
 
 
 
 
 
 
 
 
Since: 
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Note that if the load is real, the voltage standing wave pattern at the 
load is maximum when ZR > Z01  or minimum when ZR < Z01 .  The 
transformer can be connected directly at the load location or at a 
distance from the load corresponding to a multiple of 4λ . 
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If the load impedance is real and the transformer is inserted at a 
distance from the load equal to an even multiple of 4λ , then 
 
 

1; d 2
4 2A RZ Z n nλ λ

= = =  

 
 
but if the distance from the load is an odd multiple of  4λ  
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The input impedance of the impedance transformer after inclusion 
in the circuit is given by 
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For impedance matching we need 
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The characteristic impedance of the transformer is simply the 
geometric average between the characteristic impedance of the 
original line and the load seen by the transformer.  
 
Let’s now review some simple examples. 
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 Real Load Impedance 
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Note that an identical result is obtained by switching Z01 and RR 
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Another real load case 
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Same impedances as before, but now the transformer is inserted at 
a distance 4λ  from the load (voltage minimum in this case) 
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 Complex Load Impedance – Transformer at voltage maximum 
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 Complex Load Impedance – Transformer at voltage minimum 
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• Generalized Transformer 
 

If it is not important to realize the impedance transformer with a 
quarter wavelength line, one may try to select a transmission line 
with appropriate length and characteristic impedance, such that the 
input impedance is the required real value  
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After separation of real and imaginary parts we obtain the equations  
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The transformer can be realized as long as the result for Z02 is real. 
Note that this is also a narrow band approach. 
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Matching II – Shunt Admittance 
 
We wish to insert a parallel (shunt) reactance on the transmission 
line to obtain impedance matching.  Since the design involves a 
parallel circuit, it is more convenient to consider admittances: 
 
 
 
 
 
 
 
The shunt may be inserted at locations ds where the real part of the 
line admittance is equal to the characteristic admittance Y0 
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To solve this design problem, we need to find the suitable locations 
ds (where the real part of the line admittance is equal to Y0) and the 
corresponding values of the shunt susceptance −B. 

The shunt element may be also realized by inserting a segment of 
transmission line of appropriate length, called a stub.   

In order to obtain a pure susceptance, the stub element may consist 
of a short-circuited or an open-circuited transmission line with 
input admittance –jB. 

ds 

−jB 
YR Y0  

Y1’
Y1 

ds 

−jB 
YR Y0  

Y1’
Y1 



Transmission Lines 

© Amanogawa, 2006 – Digital Maestro Series 162

The line admittance at location ds can be expressed as a function of 
reflection coefficient  
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For more general results, we introduce normalization: 
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Then, the line reflection coefficient can be expressed in terms of b  
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Since we know that ( ) exp( 2 )s R sd j dΓ = Γ − β   
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The absolute value of the load reflection coefficient provides b 
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Added to account for 
periodic behavior



Transmission Lines 

© Amanogawa, 2006 – Digital Maestro Series 164

Finally, the phase of the load reflection coefficient yields ds   
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The last term accounting for periodic behavior of the solution gives 
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indicating that the solutions repeat every 2λ  along the line.  


