Electromagnetic Fields

Rectangular Wave Guide

Assume perfectly conducting walls and perfect dielectric filling the
wave guide.

Convention: dis always the wider side of the wave guide.
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Electromagnetic Fields

It is useful to consider the parallel plate wave guide as a starting
point. The rectangular wave guide has the same TE modes
corresponding to the two parallel plate wave guides obtained by
considering opposite metal walls
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Electromagnetic Fields

The TE modes of a parallel plate wave guide are preserved if
perfectly conducting walls are added perpendicularly to the electric
field.

The added metal plate does
| . | not disturb normal electric
H >§ field and tangent magnetic
l . | field.

On the other hand, TM modes of a parallel plate wave guide
disappear if perfectly conducting walls are added perpendicularly to
the magnetic field.

. | The magnetic field cannot
‘ ' | be normal and the electric
El> field cannot be tangent to a

perfectly conducting plate.
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Electromagnetic Fields

The remaining modes are TE and TM modes bouncing off each wall,
all with non-zero indices.
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Electromagnetic Fields

We have the following propagation vector components for the
modes in a rectangular waveguide
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Electromagnetic Fields

The cut-off frequencies for all modes are

i \/(m\2+(n\2
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with cut-off wavelengths
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with indices

TE modes m=0,1, 2, 3,... TM modes m
n=0,1,2,3,... n
(but m=n=0 not allowed)
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Electromagnetic Fields

The guide wavelengths and guide phase velocities are
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Electromagnetic Fields

The fundamental mode is the TE,, with cut-off frequency

fc(TEIO) = 20%

The TE,, electric field has only the y-component. From Ampere’s
law

VxE=-jouH

U
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© Amanogawa, 2006 — Digital Maestro Series 247




Electromagnetic Fields

The complete field components for the TE,; mode are then
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Electromagnetic Fields

The time-average power density is given by the Poynting vector

(P(1)) = lRe{]::xﬁ*} = lRe{EO Sin(m) PRLEEE
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Electromagnetic Fields

The resulting time-average power density flow is space-dependent
on the cross-section (varying along X, uniform along y)

2
<P(t)> = E; 52 sin? (mj i

@ 4}

The total transmitted power for the TE;;, mode is obtained by
integrating over the cross-section of the rectangular wave guide
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Electromagnetic Fields

The rectangular waveguide has a high-pass behavior, since signals
can propagate only if they have frequency higher than the cut-off
for the TE , mode.

For mono-mode (or single-mode) operation, only the fundamental
TE;c mode should be propagating over the frequency band of
interest.

The mono-mode bandwith depends on the cut-off frequency of the
second propagating mode. We have two possible modes to
consider, TE;; and TE,,

fe (TEOI) = 2b\/ﬁ

Je(TEy) = =2/ (TEyp)
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Electromagnetic Fields

1

a\| L E

If bzg = fc(TEm):fc(TEzo):ch(TEIO):

Mono-mode bandwidth
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Electromagnetic Fields

If b<g = f.(TEy) < f.(TEy)

Mono-mode bandwidth

pd ~
~ 7

. A
| I I

0 f:(TEy) f:(TEy) fc(TE(n)

In practice, a safety margin of about 20% is considered, so that the
useful bandwidth is less than the maximum mono-mode bandwidth.
This is necessary to make sure that the first mode (TE() is well
above cut-off, and the second mode (TE,; or TE,) is strongly
evanescent.

Safety margin

‘/ Useful bandwidth \'
i !<—>|< > | | ]:
0 fe(TEqp) f(TEzo)fc(TEm)
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Electromagnetic Fields

If a= b (square wave guide) — fc(TEl()) = fc(TEOI)

| .
I | i
0 fc(TEIO) fc(TEZO) f

f:(TEy;) f:(TEg,)

In the case of perfectly square wave guide, TE,, and TEy, modes
with m=n are degenerate with the same cut-off frequency.

Except for orthogonal field orientation, all other properties of
degenerate modes are the same.
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Electromagnetic Fields

Example - Design an air-filled rectangular waveguide for the
following operation conditions:

a) 10 GHz is the middle of the frequency band (single-mode

operation)
b) b=a/2
The fundamental mode is the TE,, with cut-off frequency
8
1 C 3 x 10
Je(TEyy) = Hz

2a\/&y 1, " 24 2a

For b=a/2, TE,, and TE,; have the same cut-off frequency.

£.(TEq1) = 1 C 5% f 3><108 Ho
¢ 01 2b\/g, 1, 2b 2a a a
1 ¢ 3%10%

(TEHg) = St Hz
Je(TEy e a4 a
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Electromagnetic Fields

The operation frequency can be expressed in terms of the cut-off
frequencies

_ J(TEyy) — f.(TEy)
f=f.(TEy) + 5

_ Je(TEyp) sz Je(TEo01) _ 10.0 GHZ

) 8 L
:>10.0><109=% 3x107  3x10

2a a

— a=225%x10"2m b=;l=1.125><10_2m
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Electromagnetic Fields

Maxwell’s equations for TE modes

Since the electric field must be transverse to the direction of
propagation for a TE mode, we assume

E, =0

In addition, we assume that the wave has the following behavior
along the direction of propagation

e_jﬂz'z

In the general case of TE,,, modes it is more convenient to start
from an assumed intensity of the z-component of the magnetic field

H, = H,cos(f, -x)cos(,By -y)e_j'gz'z

=H, cos(mxjcos(n;zy)e_j'gz'z

4}
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Electromagnetic Fields

Faraday’s law for a TE mode, under the previous assumptions, is

VxE=—-jouH
U
0 . .
hd, i _gEy:]/BZEy:_Ja)IUHx (1)
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ox 2 Oy
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Electromagnetic Fields

Ampere’s law for a TE mode, under the previous assumptions, is

VxH=josE

U
: : O H,+jpH, = jweE, (4)
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Electromagnetic Fields

From (1) and (2) we obtain the characteristic wave impedance for
the TE modes

Ey Ey _wH

- = =NTE
H H, A

At cut-off
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Electromagnetic Fields

In general,

2 2 2
5 - wzye—(mj _(””j 2| A : 42
a b A (27)" A

2
27T A
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C

and we obtain an alternative expression for the characteristic wave
impedance of TE modes as
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Electromagnetic Fields

From (4) and (5) we obtain
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Electromagnetic Fields

We have used

S B 1 :(/10)2
pP-B Bi+By (w)ﬁ(wf 27
b

a

The final expressions for the magnetic field components of TE
modes in rectangular waveguide are
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Electromagnetic Fields

The final electric field components for TE modes in rectangular

wave guide are
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Electromagnetic Fields

Maxwell’s equations for TM modes

Since the magnetic field must be transverse to the direction of
propagation for a TM mode, we assume

H, =0

In addition, we assume that the wave has the following behavior
along the direction of propagation

e_jﬁz "z

In the general case of TM,,, modes it is more convenient to start
from an assumed intensity of the z-component of the electric field

E, =E,cos(p, -x)cos(,By -y)e_j'BZ'Z

=F cos(mﬂxjcos( yj Pz
a b
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Electromagnetic Fields

Faraday’s law for a TM mode, under the previous assumptions, is

VxE=-jouH
U
det 0 9 9 —
ox Oy Oz
E, E, E,
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Electromagnetic Fields

Ampere’s law for a TM mode, under the previous assumptions, is

VxH=joeE
U
B L 0] , .
]/BzHy_Ja)gEx (4)
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Electromagnetic Fields

From (4) and (5) we obtain the characteristic wave impedance for
the TM modes

We can finally express the characteristic wave impedance

alternatively as
2
A
M Z&Z% 1‘(]
&

A

C

Note once again that the same cut-off conditions, found earlier for
TE modes, also apply for TM modes.
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Electromagnetic Fields

From (1) and (2) we obtain
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Electromagnetic Fields

The final expressions for the electric field components of TM modes
in rectangular waveguide are

2
Ey=-Jjp. mﬂ(%j E, cos(mx)sin(m
a \2rx a b
E,==jp nﬂ(ﬂcfE sin(mxjcos(m
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Electromagnetic Fields

The final magnetic field components for TM modes in rectangular
wave guide are

H, = _Ey/nTM

2
= P nﬂ(icj Eosin(mﬂ jcos( yj Pz
Ny b \2rx a b

Hy:Ex/UTM
2
=—j P mﬂ(lcj E cos(mﬂxjsin( , y) ~JPzz
a

UTM a 27

Note: all the TM field components are zero if either =0 or £,~0
This proves that TM,, or TM,, modes cannot exist in the

rectangular wave guide.
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Electromagnetic Fields

* Field patterns for the TE;; mode in rectangular wave guide

V&8

Side view
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Electromagnetic Fields

* The simple arrangement below can be used to excite the TE in a
rectangular waveguide.

Closed end

The inner conductor of the coaxial cable behaves like an antenna
and it creates a maximum electric field in the middle of the cross-
section.
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