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Power in Circuits 
Consider the input impedance of a transmission line circuit, with an 
applied voltage v(t) inducing an input current i(t).   
 
 
 
 
 
 
 
For sinusoidal excitation, we can write 
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where V0 and I0 are peak values and φ  is the phase difference 
between voltage and current.  Note that φ = 0  only when the input 
impedance is real (purely resistive). 
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The time-dependent input power is given by 
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The power has two (Fourier) components: 

 
(A) an average value 

0 0 cos( )
2

V I
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(B)  an oscillatory component with frequency 2f 
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The power flow changes periodically in time with an oscillation like 
(B) about the average value (A). Note that only when φ = 0  we have 
cos(φ) = 1, implying that for a resistive impedance the power is 
always positive (flowing from generator to load).   
 
When voltage and current are out of phase, the average value of the 
power has lower magnitude than the peak value of the oscillatory 
component. Therefore, during portions of the period of oscillation 
the power can be negative (flowing from load to generator).  This 
means that when the power flow is positive, the reactive component 
of the input impedance stores energy, which is reflected back to the 
generator side when the power flow becomes negative. 
 
For an oscillatory excitation, we are interested in finding the 
behavior of the power during one full period, because from this we 
can easily obtain the average behavior in time.  From the point of 
view of power consumption, we are also interested in knowing the 
power dissipated by the resistive component of the impedance. 
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Using ( )cos cos cos sin sinA B A B A B+ = −  one can write 
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This gives an alternative expression for power: 
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The real power corresponds to the power dissipated by the resistive 
component of the impedance, and it is always positive. 
 
The reactive power corresponds to power stored and then reflected 
by the reactive component of the impedance.  It oscillates from 
positive to negative during the period. 
 
Until now we have discussed properties of instantaneous power.  
Since we are considering time-harmonic periodic signals, it is very 
convenient to consider the time-average power 
 

0
1( ) ( )TP t P t dt
T

〈 〉 = ∫  

where T = 1 / f   is the period of the oscillation. 
 
To determine the time-average power, we can use either the Fourier 
or the real/reactive power formulation. 
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Fourier representation 
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As one should expect, the time-average power flow is simply given 
by the Fourier component corresponding to the average of the 
original signal. 
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Real/Reactive power representation 
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This result tells us that the time-average power flow is the average 
of the real power.  The reactive power has zero time-average, since 
power is stored and completely reflected by the reactive component 
of the input impedance during the period of oscillation. 
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The maximum of the reactive power is  

( ) ( ) ( )0 0 0 0max{ } max{ sin sin 2 } sin
2 2reac
V I V IP t= φ ω = φ  

Since the time-average of the reactive power is zero, we often use 
the maximum value above as an indication of the reactive power. 
 
The sign of the phase φ tells us about the imaginary part of the 
impedance  or reactance: 
 
 φ > 0   The reactance is inductive 
   Current is lagging with respect to voltage 
   Voltage is leading with respect to current 
 
 φ < 0    The reactance is capacitive 
   Voltage is lagging with respect to current 
   Current is leading with respect to voltage 
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If the total reactance is inductive 
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If the total reactance is capacitive 

    
1V Z I R I j I
C

= = −
ω

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

- j I /ω C

φ

I

V

R I

Im 

Re

Voltage lags
φ < 0 



Transmission Lines 

© Amanogawa, 2006 – Digital Maestro Series 28

 
In many situations, we may use the root-mean-square (r.m.s.) 
values of quantities, instead of the peak value.  For a given signal 

0( ) cos( )v t V t= ω  

the r.m.s. value is defined as  
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This result is valid for sinusoidal signals.  Any given signal shape 
corresponds to a specific coefficient ( peak factor = 0 / rmsV V  ) that 
allows one to convert directly from peak value to r.m.s. value.   
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The peak factor for sinusoidal signals is 
0 2 1.4142
rms

V
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For a symmetric triangular signal the peak factor is 
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For a symmetric square signal the peak factor is simply  
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For a non-sinusoidal periodic signal, we can use a decomposition 
into orthogonal Fourier components to obtain the r.m.s. value: 
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The final result holds for any decomposition into orthogonal 
functions and it is known in mathematics as Parseval’s identity.  
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In terms of r.m.s. values, the time-average power for a sinusoidal 
signal is then 

0 0( ) cos( ) cos( )
2 2 rms rms

V IP t V I〈 〉 = φ = φ  

 
Finally, we can relate the time-average power to the phasors of 
voltage and current.  Since 
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The time-average power in terms of phasors is given by 

*
0 0

0 0

1 1( ) Re{ } Re{ exp( ) }
2 2

cos( )
2

P t V I V I j

V I

〈 〉 = = φ

= φ
 

 
Note that one must always use the complex conjugate of the phasor 
current to obtain the time-average power. It is important to 
remember this when voltage and current are expressed as 
functions of each other.  Only when the impedance is purely 
resistive, I = I* = I0  since  φ = 0. 
 
Also, note that the time-average power is always a real positive 
quantity and that it is not the phasor of the time-dependent power.  
It is a common mistake to think so.  
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Now we consider power flow including explicitly the generator, to 
understand in which conditions maximum power transfer to a load 
can take place. 
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As a first case, we examine resistive impedances 

G G R RZ R Z R= =  

 
Voltage and current are in phase at the input. The time-average 
power dissipated by the load is 
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To find the load resistance that maximizes power transfer to the 
load for a given generator we impose 

( ) 0
R

d P t
d R
〈 〉

=  

from which we obtain 
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We conclude that for maximum power transfer the load resistance 
must be identical to the generator resistance. 
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Let’s consider now complex impedances 

R R R G G GZ R jX Z R jX= + = +  

 
For maximum power transfer, generator and load impedances must 
be complex conjugate of each other: 

*
R G R G

R G

Z Z R R
X X

= ⇒ =

= −
 

 
This can be easily understood by considering that, to maximize the 
active power supplied to the load, voltage and current of the 
generator should remain in phase.  If the reactances of generator 
and load are opposite and cancel each other along the path of the 
current, the generator will only see a resistance.  Voltage and 
current will be in phase with maximum power delivered to the load. 

VG 

RG 

RG 

jXG −jXG 
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The total time-average power supplied by the generator in 
conditions of maximum power transfer is 

2 2*1 1 1 1 1Re{ }
2 2 2 4tot G in G G

R R
P V I V V

R R
〈 〉 = = =  

 
The time-average power supplied to the load is 
 

*
* *

2 2
2

1 1 1Re{ } Re
2 2

1 1 1Re
2 84

R
in in in G G

G R G R

R R
G G

RR

ZP V I V V
Z Z Z Z

R jXV V
RR

   〈 〉 = =   + +   
 + = = 
  

 

 
 



Transmission Lines 

© Amanogawa, 2006 – Digital Maestro Series 38

 
The power dissipated by the internal generator impedance is 
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We conclude that, in conditions of maximum power transfer, only 
half of the total active power supplied by the generator is actually 
used by the load.  The generator impedance dissipates the 
remaining half of the available active power. 
 
 
This may seem a disappointing result, but it is the best one can do 
for a real generator with a given internal impedance! 


