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Complex Numbers, Phasors and Circuits 
 
Complex numbers are defined by points or vectors in the complex 
plane, and can be represented  in Cartesian coordinates 

1z a jb j= + = −  

or in polar (exponential) form 
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Every complex number has a complex conjugate 
 

( )* *z a jb a jb= + = −  
 
so that 
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In polar form we have 
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The polar form is more useful in some cases.  For instance, when 
raising a complex number to a power, the Cartesian form 

( ) ( ) ( )nz a jb a jb a jb= + ⋅ + +…  

is cumbersome, and impractical for non−integer exponents.  In 
polar form, instead, the result is immediate 
 

[ ] ( )exp( ) expnn nz A j A jn= φ = φ  
 

In the case of roots, one should remember to consider φ + 2kπ  as 
argument of the exponential, with  k = integer, otherwise possible 
roots are skipped: 

( ) 2exp 2 expnn n kz A j j k A j j
n n
φ π = φ + π = + 

 
 

The results corresponding to angles up to 2π  are solutions of the 
root operation. 
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In electromagnetic problems it is often convenient to keep in mind 
the following simple identities 
 

exp exp
2 2

j j j jπ π   = − = −   
   

 

 
 
It is also useful to remember the following expressions for 
trigonometric functions 
 

( ) ( )exp( ) exp( ) exp( ) exp( )cos ; sin
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resulting from Euler’s identity 
 

exp( ) cos( ) sin( )jz z j z± = ±  
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Complex representation is very useful for time-harmonic functions 
of the form 

( ) ( )[ ]
( ) ( )[ ]
( )[ ]

cos Re exp

Re exp exp

Re exp

A t A j t j

A j j t

A j t

ω + φ = ω + φ

= φ ω

= ω

 

The complex quantity 
 

( )expA A j= φ  
 

contains all the information about amplitude and phase of the 
signal and is called the phasor of  
 

( )cosA tω + φ  
 
If it is known that the signal is time-harmonic with frequency ω, the 
phasor completely characterizes its behavior. 
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Often, a time-harmonic signal may be of the form:  

( )sinA tω + φ  
and we have the following complex representation 
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with phasor ( )( )exp / 2A A j= φ − π  

This result is not surprising, since 

cos( / 2) sin( )t tω + φ − π = ω + φ  
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Time differentiation can be greatly simplified by the use of phasors.  
Consider for instance the signal 
 

( ) ( )0 0( ) cos  expV t V t V V j= ω + φ = φwith phasor  
 
 
The time derivative can be expressed as 
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With phasors, time-differential equations for time harmonic signals 
can be transformed into algebraic equations.  Consider the simple 
circuit below, realized with lumped elements 
 
 
 
 
 
 
 
 
 
 
 
This circuit is described by the integro-differential equation 
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Upon time-differentiation we can eliminate the integral as 
 

( )2

2
( ) 1 ( )

d i td v t d iL R i t
dt dt Cdt

= + +  

 
If we assume a time-harmonic excitation, we know that voltage and 
current should have the form 
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⇒
 

 
 
If  V0 and αV  are given,  
 

⇒  I0 and αI are the unknowns of the problem. 
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The differential equation can be rewritten using phasors 
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Finally, the transform phasor equation is obtained as 
 

1V R j L j I Z I
C

 = + ω − = ω 
 

 
where 
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The result for the phasor current is simply obtained as 
 

( )0 exp
1 I

V VI I j
Z R j L j

C

= = = α
 + ω − ω 

 

 
which readily yields the unknowns I0 and αI . 
 
 
The time dependent current is then obtained from 
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The phasor formalism provides a convenient way to solve time-
harmonic problems in steady state, without having to solve directly 
a differential equation.  The key to the success of phasors is that 
with the exponential representation one can immediately separate 
frequency and phase information.  Direct solution of the time-
dependent differential equation is only necessary for transients. 
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The phasor representation of the circuit example above has 
introduced the concept of impedance.  Note that the resistance is 
not explicitly a function of frequency.  The reactance components 
are instead linear functions of frequency:  
 
 Inductive component    ⇒   proportional to ω 
 Capacitive component  ⇒   inversely proportional to ω 
 
Because of this frequency dependence, for specified values of L 
and C , one can always find a frequency at which the magnitudes of 
the inductive and capacitive terms are equal 
 

1 1
r r

r
L

C LC
ω = ⇒ ω =

ω
 

 
This is a resonance condition. The reactance cancels out and the 
impedance becomes purely resistive. 
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The peak value of the current phasor is maximum at resonance 
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Consider now the circuit below where an inductor and a capacitor 
are in parallel 
 
 
 
 
 
 
 
 
 
 
 
The input impedance of the circuit is 
 

1

2
1

1
in

j LZ R j C R
j L LC

− ω = + + ω = + ω  − ω
 

C
V 

I L 
R 



Transmission Lines  

© Amanogawa, 2006 – Digital Maestro Series 17
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At the resonance condition 
 

1
r LC

ω =  

 
the part of the circuit containing the reactance components 
behaves like an open circuit, and no current can flow.  The voltage 
at the terminals of the parallel circuit is the same as the input 
voltage V. 
 


